

PHOTOSYNTHESIS

LIGHT DEPENDENT REACTION

- Light energy is absorbed by photosynthetic pigments (e.g. chlorophyll) in photosystem II (PSII). The photosystems are found in the thylakoid membranes of the chloroplasts.
- Electrons in the chlorophyll are excited to a higher energy level = the electrons move to photosystem I (PSI) via electron carriers (proteins that transfer electrons).
- The energy the electrons lose as they move to PSI is used to transport H+ from the stroma into the thylakoid = a proton gradient forms.
- H+ move back into the stroma down their concentration gradient via ATP synthase. The energy from this movement drives the formation of <u>ATP</u> from ADP and P.
- PSI absorbs light energy and electrons in the chlorophyll are excited even further.
- Electrons are transferred to NADP (along with H+) to form NADPH.

NOTE: when electrons move from PSII along the electron transport chain to PSI they need to be replaced. Light energy splits water into H+, <u>oxygen</u> and **electrons** (so the electrons are replaced); this is called photolysis.

The light dependent reaction involves 2 types of photophosphorylation to produce ATP from ADP. **Non-cyclic photophosphorylation** = the main type, both photosystems are used (see notes above). **ATP**, **NADPH** and **oxygen** are produced (oxygen produced from the photolysis of water). ATP and NADPH are the useful products as these are needed for the next part of photosynthesis.

Cyclic photophosphorylation can also happen at the same time as non-cyclic. This type only uses PSI and produces small amounts of ATP only.

LIGHT INDEPENDENT REACTION (Calvin cycle) -ATP and NADPH from light dependent reaction used

 CO_2 + RuBP \rightarrow 2 x GP (RuBisCO enzyme needed)

 $2 \times GP \rightarrow 2 \times TP$ (ATP provides energy for this stage and NADPH provides H+ for this)

 $TP \rightarrow glucose$ (and other organic substances) $1/_{6} TP$ made is used for this only

 $TP \rightarrow regenerates RuBP$ % TP made are used for this <u>ATP</u> needed

The Calvin cycle happens in the stroma. It needs to turn 6 times to make 1 glucose molecule. 3 cycles makes 6 TPs but only 1 out of 6 is used to make glucose. TP is a 3 carbon molecule so you need 2 TPs to make a 6 carbon sugar like glucose.

